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Beyond flavour to the gut and back
Mikiko Kadohisa1,2

Abstract

This paper describes how food is sensed in both the mouth where it produces food reward and pleasantness that
guides food intake and is sensed in the gut where it produces satiety and conditioned effects including learned
appetite and learned satiety for the food eaten. Taste and other receptors present in both the mouth and gut are
involved in these effects. The signals about the presence of food in the mouth and gut are transferred by separate
pathways to the brain where the satiety signals from the gut reduce the reward value and subjective pleasantness
of taste and other oral sensory signals including food texture. Food flavour preferences can be associatively
conditioned by pairing with food in the gut in brain regions such as the orbitofrontal cortex and amygdala. Current
issues considered in this paper are how gut sensing of food influences hormone release including cholecystokinin
(CCK), peptide YY (PYY), and glucagon-like peptide-1 (GLP-1); how the sensing of different nutrients in the gut may
influence unconditioned satiety and conditioned preference and satiety; and how cognition may modulate the
pleasantness of food and thus the control of food intake.
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Review
Background
Food provides us with nutrition, energy, and reward with
its subjective correlate of pleasure, and then satiety. Sig-
nals elicited by food in the mouth produce reward and
pleasantness, while those in the gut produce satiety, but
can also lead to a conditioned (learned) preference and/or
a conditioned satiety for the orally sensed flavour. This
paper reviews the taste and other sensing mechanisms in
the mouth and the gut and shows how they contribute to
these reward, satiety, and conditioned effects mediated by
signals produced when food reaches the gut. Understand-
ing these signals and their interactions in the brain pro-
vides an important foundation for understanding the
control of food intake and its disorders in which hunger,
satiety, and food reward signals may be altered.

Taste and other receptors for food in the mouth and
gastrointestinal tract
Taste sensation is an important contributor to the re-
ward value and delicious sensation produced by food in
the mouth. In addition to taste, other oral sensory

processes including oral texture contribute to the reward
value of food flavour, as do olfactory, visual, and cogni-
tive effects. At least five classes of oral taste receptor or
sensors (T1R2 + T1R3 for sweet, sodium channel ENaC
for salt, T2Rs for bitter, and PKD2L1-expressing TRC
for sour, and T1R1 + T1R3 for umami) [1–6] sense food
and transmit signals to the brain, with the rostral part of
the nucleus of the solitary tract (NTS), the first synapse
in the central nervous system. When taste reaches the
brain, it, together with olfactory and visual inputs, can
change the physiological state including the production
of saliva and secretion of hormones [7–9]. These ceph-
alic phase responses elicited by the sight, smell, and taste
of food before ingestion are primarily mediated through
the parasympathetic system to change physiological
states and secretion of hormones such as insulin,
ghrelin, and pancreatic polypeptide (PP) [7–9]. A palat-
able stimulus elicits greater cephalic PP release than a
non-palatable stimulus [10], and cephalic PP release de-
pends on the macronutrient [9]. It has been suggested
that psychological and/or cognitive attitudes towards
food can influence individual cephalic phase responses
[10]. Recently, it has been reported that taste cells in the
mouth express different types of peptides such as
glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK),
and peptide YY (PYY) [11–13]. In rodents, these peptides
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may influence salt and sour sensitivity [14, 15]. In addition
to taste, other oral sensing transmits information about
food viscosity, fat texture, and temperature, as shown by
the responses of neurons in the primary and secondary
taste cortical areas [16–18].
When food enters the gastrointestinal (GI) tract, it ac-

tivates a wide range of gut receptors, which stimulate lo-
cally the release of peptides such as CCK, PYY, ghrelin,
and GLP-1 from endocrine cells [12, 19–24], which play
a crucial role in the regulation of food intake [25–30].
Sugar or sweetener delivered into the GI tract acts
through sodium-glucose transporters (SGLTs) to stimu-
late the release of GLP-1 [12, 31, 32]. In contrast, glu-
cose transporter type2 (GLUT2) is not involved in the
release of GLP-1 [12, 33, 34]. Activation of T2R bitter
receptors in the GI tract can lead to the release of CCK
or PYY, which can influence vagal afferents [19, 35, 36].
However, the role of gut taste receptors in releasing hor-
mones is controversial. An artificial non-caloric sweet-
ener, sucralose, does not induce the release of GLP-1 by
affecting L cells in rats [37] and humans in vivo [38, 39],
but it does induce the release of GLP-1 from mouse
enteroendocrine cells in vitro [40]. Gut receptors for
other nutrients such as amino acids and fatty acids have
been identified. For example, GPRC6A and CaSR are re-
ceptors for amino acids and FFARs for free fatty acids
including FFA2 (GRP43) and FFA3(GRP41) which are
receptors for short-chain fatty acids (SCFAs) produced
by the gut microbiome [12, 41–43]. These receptors are
involved in the secretion of peptide hormones such as
GLP-1, CCK, and PYY with contribution to energy me-
tabolism [12, 41–43]. Thus, taste receptors in the gut
will not alone be responsible for peptide hormone re-
lease and other receptors for amino acids and fatty acids,
and transporters such as SGLTs are also involved in pep-
tide hormone release. These peptide hormones may act
both peripherally and centrally to influence processes in
the gut and in the brain. Vagal afferents which project to
the caudal part of the NTS convey information about
some nutrients in the GI tract [44].
Intragastric administration of different taste solutions

modulates blood-oxygen-level-dependent (BOLD) sig-
nals in different areas of the rat brain; for example, glu-
cose modulates BOLD signals in the anterior cingulate
cortex (ACC), insular cortex (IC), the ventral tegmental
area (VTA), the substantia nigra (SN), and the amygdala,
and umami modulates BOLD signals in the NTS, hypo-
thalamus, and the amygdala [45, 46]. However, saccharin
administration did not modulate BOLD signals in the
VTA, SN, or amygdala in the same way as glucose [47].
Importantly, although taste receptors in the gut are

implicated in peptide hormone release, they are not in-
volved in taste sensation. The fact that patients who take
a meal through a nasogastric or gastrostomy tube state

that they do not taste and do not enjoy the food [48]
provides evidence that gut taste receptors are not in-
volved in taste sensation.
In summary, taste receptors in the mouth and GI tract

have different roles in food intake (Fig. 1). Taste recep-
tors in the mouth primarily mediate taste sensations
which reflect properties of tastants, such as their inten-
sity and reward value and pleasantness. Oral taste recep-
tors are necessary for the full rewarding effects of sweet
taste in that sucrose consumption is reduced in the
T1R3 knockout mice [49]. Taste receptors and other re-
ceptors including chemoreceptors in the gut contribute
to activating the endocrine system to release peptide
hormones and also carry signals via vagal afferents to
the brain. Understanding these gut food sensing mecha-
nisms better may lead to better treatments for metabolic
disease such as diabetes mellitus as well as disorders in
food intake control.

Pathways of oral and visceral information
Neural pathways
Taste receptors in the mouth connect via the facial
(cranial nerve VII), glossopharyngeal (cranial nerve IX),
and vagus (cranial nerve X) nerves to the central ner-
vous system (CNS). In parallel, other food properties
such as temperature and texture are conveyed to the
CNS via the trigeminal nerve (cranial nerve V). The
vagus also innervates the GI tract. The NTS in the me-
dulla is the first central relay for the primary sensory
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Fig. 1 Taste receptors in the mouth and gastrointestinal tract. Taste
receptors in the mouth primarily mediate taste sensations which
reflect the intensity and palatability of the taste. Taste receptors in
the gut contribute to unconditioned (unlearned) satiety, to
conditioned satiety, and to conditioned appetite effects, by neural
pathways from the gut to the brain and by activating hormones
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nerves [50]. Nerves V, VII, and IX which convey taste
largely terminate in the rostral lateral segment of NTS,
while vagal afferents (X) are much more concentrated in
the caudal medial segment of the NTS [50]. After this,
there are differences between primates and rodents. In
the primate, the projections from the rostral, gustatory
region of the NTS bypass the parabrachial nucleus
(PBN) on their way to the thalamic gustatory relay in
the caudal half of the parvicellular division of the ven-
troposteromedial nucleus (VPMpc). Then, gustatory in-
formation in the VPMpc is transferred to the granular
IC [51, 52] which projects to the lateral and basal nuclei
of the amygdala [53] and the orbitofrontal cortex (OFC)
where visual and olfactory modalities converge with
taste and oral texture [51, 52, 54–56]. In the rodent, the
taste part of the NTS projects to the PBN [57] which
projects to the VPMpc, the central nucleus of the amyg-
dala (CEA), and to the hypothalamus [58, 59] (Fig. 2),
and the PBN has reciprocal connections from the CEA
and hypothalamus [60, 61].
With respect to visceral afferent pathways (Fig. 3), the

visceral region in the caudal part of the NTS projects to
the PBN. The PBN projects to the rostral half of the
VPMpc (the non-taste part), the CEA, the lateral hypo-
thalamic nuclei, the VTA, and to the SN in macaques
[52, 57, 62, 63]. The visceral part of VPMpc projects to
the agranular insula which is located just posterior to
the OFC [64, 65] and the insula projects to the ventral stri-
atum (VS) [66]. The VTA and SN project to the VS, which
also receives inputs from the OFC and ACC [67–70],

which is part of a reward circuit [69] that could drive the
motivation for eating.

Humoral pathway
Individual gut peptide hormonal signals which influence
the regulation of food intake are transferred to the CNS
in different ways: some peptide hormones such as CCK,
PP, PYY, oxyntomodulin (OXM), and GLP-1 may act via
effects mediated peripherally transmitted through the
vagus, some like leptin are transferred via the blood-
stream, and others like ghrelin transfers information via
both neural and humoral pathways [71–76]. Peptide hor-
mone signals via the bloodstream reach the arcuate nu-
cleus (ARC) of the hypothalamus [71, 72, 74, 75, 77, 78].

Cortical and subcortical areas involved in processing of
information from the mouth and gut
Insular cortex
A taste region of the granular anterior IC receives oral in-
formation from the VPMpc [51, 52] and is therefore by def-
inition primary taste cortex. Insular taste cortex neurons
discriminate not only between taste stimuli [55, 79–82] but
also between other sensory modalities such as texture and
temperature, which in some cases are combined with taste
responsiveness by some single neurons [18]. The activity of
primate IC neurons is not modulated by satiety [80, 83],
and the same applies to primate NTS neurons [84]. In con-
trast, in rodents, satiety influences taste processing even in
the NTS [85], making the system very different from that
of primates, and implying that reward value or hedonics is

Fig. 2 Taste pathways in the macaque and rat. In the macaque, gustatory information reaches the nucleus of the solitary tract (NTS), which
projects directly to the taste thalamus (parvicellular division of the ventroposteromedial nucleus, VPMpc) which then projects to the taste cortex
in the anterior insula (Insula). The insular taste cortex then projects to the orbitofrontal cortex (OFC) and amygdala (Amy). The OFC projects taste
information to the anterior cingulate cortex (ACC). The OFC, ACC, and Amy project to the hypothalamus (HT). In macaques, feeding to normal
self-induced satiety does not decrease the responses of taste neurons in the NTS or taste insula (and by inference not VPMpc). In the rat, in
contrast, the NTS projects to a pontine taste area, the parabrachial nucleus (PBN). The PBN then has projections directly to a number of subcortical
structures, including the HT and Amy, thus bypassing thalamo-cortical processing. The PBN in the rat then projects to the taste thalamus (VPMpc),
which projects to the rat taste insula. The taste insula in the rat then projects to an agranular orbitofrontal cortex (AgOFC), which probably
corresponds to the most posterior part of the primate OFC, which is agranular. (In primates, most of the OFC is granular cortex, and the rat
may have no equivalent to this [210, 211] Fig. 2.1, see also 87 Fig. 1.1). In the rat, satiety signals such as gastric distension and satiety-related
hormones decrease neuronal responses in the NTS (see text) and by inference therefore in the other brain areas with taste-related responses,
as indicated in the figure. Adapted from ref. [89]
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not clearly separate from sensory processing in rodents
[86–89] (Fig. 2). In rodents, the IC is involved in the learn-
ing of conditioned taste aversions (CTAs) [90–94].
There also appears to be a visceral representation in

the agranular area of the IC, in the ventral part of the
anterior IC [65], and the agranular insula projects to the
VS [66]. Stimulation of the anterior IC elicits autonomic
responses and modulation of vascular and respiratory
states [95]. Thus, signals from the mouth and gut are
processed separately within the primate IC.

Orbitofrontal cortex
The OFC receives gustatory information from the IC,
and the posterior OFC has been recognised as an area
which processes visceral and also olfactory and visual in-
formation about foods [16, 17, 55, 65, 96–104]. The
OFC projects to the ACC, hypothalamus, amygdala, and
VS [56, 64, 67–70, 103]. In addition, the OFC plays an
important role in the reward value and the related sub-
jective pleasantness of oral stimuli. First, OFC neurons
discriminate between different visual stimuli which are
associated with different rewards (such as foods) or pun-
ishers (such as the taste of salt) [100, 105–108]. Second,

the responses of OFC neurons to taste, olfactory, and
visual stimuli produced by food are decreased to zero
after the reward value of the food has been decreased by
feeding the food to satiety [109, 110]. Third, the activity
of OFC neurons reflects the reward value of visual and
olfactory stimuli, for the neuronal responses reverse
when the association of the visual and olfactory stimuli
with taste reward or punishment reverses [100, 111].
That is, the OFC updates stimulus value rapidly when it
changes [87, 88]. Stimulation of the posterior OFC elicits
vascular and respiratory responses [95, 112, 113].

Anterior cingulate cortex
Areas 24, 25, and 32 of the ACC (in the rat the infralim-
bic cortex and prelimbic area are counterparts of areas
25 and 32) receive inputs from the OFC [64, 114]. Areas
24, 25, and 32 project to the VS [70], and areas 25 and
32 project to the hypothalamus [103, 115, 116]. Neurons
of areas 25 and 32 or the infralimbic cortex encode taste
stimuli [117, 118] and in rodents show more sustained
responses to palatable taste stimuli compared to IC neu-
rons [118]. Neuronal activity in areas 25 and 32 is mod-
ulated by internal information such as thirst [119] and
in area 24 is related to reward-related actions [120, 121].
There is preliminary evidence that the responses of ACC
neurons to taste stimuli are influenced by feeding to sa-
tiety [117]. In addition, stimulation of the ACC produces
vascular and respiratory responses [122, 123]. Primate
lesion studies suggest that the ACC is a site of action-
outcome learning, where the outcome is a reward such
as taste [124].

Amygdala
The CEA receives visceral information directly from the
PBN [52, 57, 62, 63, 125, 126] and gustatory information
from the posterior OFC [56, 127] while the lateral nu-
cleus of the amygdala (BLA) receives gustatory informa-
tion from the IC [128, 129]. There are some connections
between the CEA and BLA [130]. The CEA and BLA
project to the VS [131]. Amygdala neurons are broadly
tuned across taste and other oral sensory stimuli com-
pared to the OFC and IC neurons [132, 133]. The amyg-
dala is involved in associative learning, with the BLA
involved in the formation of Pavlovian incentives involv-
ing the association of a conditioned stimulus (CS) with
the specific sensory features of the unconditioned stimu-
lus (US). By contrast, the CEA is involved in preparatory
conditioning—that is, in the association of a CS with the
general affective properties of the US [134, 135]. Taking
account of information processed from the mouth and
GI tract, the BLA may reflect signals elicited by food in
the mouth while the CEA may reflect those in the GI
tract. The responses of neurons of the CEA and BLA in
rats to conditioned taste stimuli are influenced by the

visceral information

Fig. 3 Visceral information pathways in the macaque. Visceral
afferent information reaches the caudal part of the nucleus of the
solitary tract (NTS), which projects to the parabrachial nucleus in the
pons (PBN). The PBN projects to the Thalamus (the visceral not taste
part of VPMpc, amygdala (Amy), hypothalamus (HT), and the ventral
tegmental area (VTA). Visceral information from the Thalamus
reaches the visceral part of the Insula, which in turn projects to the
orbitofrontal cortex (OFC). The visceral information from the VTA,
Amy, Insula, and OFC reaches the ventral striatum (VS). Taste
information (not shown in the figure) reaches the taste insula, which
projects to the OFC. In the OFC, both oral and visceral information is
integrated, in that the responses of OFC taste neurons are decreased
to zero by feeding to satiety, which reduces visceral and hormonal
satiety signals. As a result of this integration in the OFC, the reward
value of taste is represented in the OFC. The OFC projects to the
Amy, HT, and the VS. In the ACC, actions are linked associatively with
outcomes such as taste to implement actions to obtain goals such
as rewards
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conditioning [136]. Amygdala neurons of primates discrim-
inate visual stimuli associated with a positive (sweet taste)
or negative (air puff or tail pinch) outcome [137, 138],
but do not reverse their firing rapidly when the reward
contingency changes [139], and are thus unlike OFC
neurons. In addition, the amygdala is involved in the
evaluation of food reward during the period of selective
satiation in that the devaluation is impaired by inacti-
vating the BLA before the selective satiation, but not
after satiation [140]. The responses to taste of some
CEA neurons in primates showed relatively small de-
creases, on average by 58 %, during satiety [141].

Hypothalamus
The hypothalamus receives neural inputs from different
areas such as the PBN, amygdala, and the prefrontal cor-
tex including the anterior IC, caudal OFC, and the ACC
[52, 57, 63, 103, 115, 116, 126], and gut peptide hormone
signals via a humoral pathway [71, 72, 74, 75, 77, 78].
The hypothalamus projects to the OFC [56, 142–144]. The
hypothalamic nuclei, including the ARC where neural and
humoral signals communicate, the lateral hypothalamic
area, ventromedial hypothalamic nucleus, and the paraven-
tricular nucleus are key regions for food intake control
([72, 74, 75, 77, 78]. The ARC contains agouti-related
peptide-expressing neurons and pro-opiomelanocortin
neurons which have positive and negative effects on feed-
ing behaviour, respectively [74, 75, 145–147]. The ARC
communicates with the paraventricular nucleus, lateral
hypothalamic area, and ventromedial hypothalamic nu-
cleus [72, 74, 75, 77, 78, 146, 147]. It is noted that rat hypo-
thalamic neurons which express SGLTs respond to
changes in glucose concentration [31, 148]. In addition, the
responses of lateral hypothalamic area neurons to a taste
stimulus and to the sight of food decrease to zero when
the food is fed to satiety [149, 150] in a similar way to that
of OFC neurons which may provide the relevant taste and
visual inputs to the hypothalamus. Thus, the hypothalamus
reflects the integration of sensory inputs produced by food
with unconditioned and probably conditioned satiety sig-
nals of neural and humoral origins.
In summary, oral and visceral signals are transferred

to the cortices via the thalamus in the primate. The IC is
involved in the discrimination of oral sensory stimuli. In
rodents, the IC may contribute to conditioned taste
aversion. The OFC integrates individual sensory modal-
ities of food (taste, olfactory, visual, oral texture, and
temperature) to provide a multimodal representation of
food and represents it in terms of its reward value. The
ACC is implicated in action-outcome learning, that is, of
which actions are associated with reward. The OFC and
ACC project to the VS which also receives visceral- and
emotion-related information from the agranular insula
and amygdala, respectively, which takes part in a reward

circuit. The amygdala and hypothalamus receive visceral
inputs from the PBN directly as well as sensory inputs
from these cortical areas. The OFC and amygdala are in-
volved in learning associations of visual and olfactory
stimuli with taste and will act together to influence feed-
ing behaviour based on reward value [88, 151, 152]. The
hypothalamus receives gut peptide hormonal signals and
integrates these with neural information from the mouth
and GI tract. Thus, in the primate, food-related signals
from the mouth and gut are processed differently in sep-
arate areas and are integrated in the OFC and hypothal-
amus which are part of a reward circuit which drives
goal-directed behaviours including food intake.

Human imaging studies including cognitive effects on
food reward and GI function
Human imaging studies have shown taste-related activity
in the IC, OFC, and in the ACC [153, 154]. Activations
in a ventral part of the IC are related to autonomic sig-
nals [155] and the region may even overlap partly with
the taste-responsive areas.
OFC BOLD signals represent the reward value and

subjective pleasantness of taste as shown for example by
taste devaluation by feeding to satiety [156–159] and are
modulated by gut peptides, PYY, and ghrelin [160, 161].
The fact that the OFC and ACC show strong effects of
cognitive labels and selective attention instruction that
influence the palatability of taste and flavour indicates
that the OFC and ACC are involved in the processes by
which cognitive information modulates the pleasantness
of flavour [162, 163]. In addition, the ACC plays a role
in action-outcome learning [155, 164–167] to allow ac-
tions to be learned to obtain rewards. Thus, the orbito-
frontal cortex and cingulate cortex contribute to control
feeding behaviour by representing reward value including
the effects of cognition and attention on reward value.
With respect to cognitive effect on GI function, it has

been found, for example, that cognitive manipulation
can modulate gut response such as gastric emptying
[168] and affect subsequent food intake [169, 170]. Fur-
ther investigation of how cognition affects food reward
and GI function will be useful in developing our under-
standing of the control of food intake.

Interactions between oral and visceral sensory signals
Oral signals of taste, texture, and temperature, and ret-
ronasally sensed olfactory effects, implement the he-
donic reward value of food, with subjective pleasantness
correlated with activations in the OFC and ACC. Ani-
mals including humans work to obtain small quantities
of these oral signals. Food placed directly into the gut or
provided intravenously does not produce immediate un-
conditioned reward with small quantities [171, 172],
though conditioning to food placed in the gut can be
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acquired in what is a form of learned appetite [173], some-
times referred to as appetition [174]. When ingested food
reaches the GI tract, it produces satiety by producing gas-
tric distension (as shown by the absence of satiety in sham
feeding when food drains from a gastric or duodenal can-
nula [175, 176]), and the gastric distension only occurs if
food enters the duodenum where it activates gut receptors
so causing closing of the pyloric sphincter. If the disten-
sion is reduced at the end of a meal, then feeding resumes
very quickly in non-human primates [176]. This is prob-
ably an unconditioned satiety effect produced by gastric
distension. In addition to unconditioned effects of food in
the gut, there are also conditioned effects whereby the
post-ingestive consequences of a flavour can influence the
reward value of the flavour later, as described below.
Sensory-specific satiety is the state in which a food be-

comes less rewarding after it has been eaten to satiety,
but other foods may remain rewarding [87, 177, 178].
This phenomenon is implemented in the OFC [110],
which receives not only sensory but also visceral infor-
mation [55, 65, 97–99, 102, 103]. Further integration of
all these signals may occur in the hypothalamus which
receives projections from the OFC and PBN.
CTAs which involve associative learning between oral

and visceral stimuli have been shown with rats [179–185].
For example, a novel taste solution (CS) followed by aver-
sive malaise (US) will not be ingested afterward although
the taste solution was rewarding before the conditioning.
The acquisition of this conditioning depends on the IC in
rats, but changes then occur in the NTS (which will influ-
ence activity in all rodent taste areas), and the CTA there-
after no longer requires the presence of the IC [93, 94].
CTAs have rarely been studied with non-human primates.
Conditioned taste preferences (CTPs) depend on visceral
signals, involving calories and nutrients that are compo-
nents of the unconditioned stimulus [173, 184–186]. The
conditioning can be fast, apparently influencing preference
for a flavour stimulus such as cherry vs grape within
15 min [174, 187]. The post-oral effect apparently does
not require T1R2 + T1R3 sweet taste receptors in the
gut in that flavour preference was still conditioned to
intragastric infusion of sucrose in T1R3 knockout
mice [188]. A humoral pathway is involved in post-
oral glucose conditioning since visceral deafferentia-
tion does not impair glucose-conditioned flavour pref-
erences [189]. In addition, humoral signals generated
by intestinal SGLT1 and SGLT3, and to a lesser de-
gree, GLUT2, may mediate post-oral sugar appetition
in mice [190]. It has been suggested that sugar me-
tabolism is not essential for the post-oral intake-
stimulating and preference-conditioning actions of
sugars in mice [190–193]. Interestingly, non-deprived
and sated animals can still acquire strong conditioned
taste preferences [194].

The energy value of food can produce conditioned ap-
petite or preference for a food and can also produce
conditioned satiety [173]. Most of the above studies have
been on conditioned preference produced by food in the
GI tract. It will be of interest in future research to ana-
lyse in addition how post-ingestive signals can produce
conditioned satiety for the flavour with which they are
paired. It would be of interest to develop our under-
standing of conditioned satiety, for this may be relevant
to food intake control and its disorders. There is some
evidence on this in humans below.

Sensory-specific satiety and associative learning in
humans
Interestingly, there is no significant difference between
sensory-specific satiety following high- and low- caloric
sweetened food [195]. The OFC BOLD signal produced
by the flavour of food is decreased in a sensory-specific sa-
tiety way by the food eaten to satiety, and this reduction
of the BOLD signal in the OFC is correlated with the re-
duction of subjective pleasantness of the food eaten to sa-
tiety [159, 196]. The BOLD signals in the OFC and
amygdala produced by visual stimuli associated with food
are reduced after that food is fed to satiety [197].
CTAs have been described in humans [183, 198], in

which the subjects describe feeling nausea after taking
some food or drink and then decreased ingestion of the
substances. In laboratory studies, subjects who have been
exposed to unfamiliar flavoured food or drink (the condi-
tioned stimulus) and are then rotated to cause motion
sickness (the unconditioned stimulus) show less ingestion
of the flavoured food or drink afterwards [199, 200]. CTPs
are likely to be acquired depending on physiological state,
such as a deficit in a particular nutrient, e.g., protein [201],
or in energy [202]. Young children show preferences for
high-caloric flavour after experiences of unfamiliar-
flavoured foods with low- and high-energy density sug-
gesting that they learn post-ingestive consequences of cal-
oric density [203, 204]. Interestingly, umami flavour
(monosodium glutamate) reduces hunger and enhances
satiety [205, 206], which suggests that umami may pro-
duce conditioned satiety and act as a potential regulator of
food intake. Thus, both learned appetite and learned sati-
ety can result from an association between the flavour of a
food and its post-ingestive consequences [173, 207] where
the integrated information about that food will be trans-
ferred into a reward circuit to drive feeding behaviour.
Taken together with animal studies, preferences and

aversions to food can be conditioned by food in the GI
tract where the OFC and amygdala can play an import-
ant role in associative learning between oral and gut in-
formation with the hypothalamus involved in the
integration of humoral and neural signals such as hun-
ger and satiety. To help control feeding behaviour better,
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it is crucial to understand the mechanisms that produce
signals for nutrient deficits and/or physiologically re-
quired energy, and those that produce satiety signals,
and how these are integrated in the brain and combined
with cognitive signals in which the OFC and ACC are
involved. This is likely to lead to advances in the treat-
ment of eating disorders such as anorexia nervosa where
it has been reported that the bottom-up processing is
decreased while the top-down cognitive processing is in-
creased [208, 209].

Conclusions
Food is sensed twice, first in the mouth and then in the
gut. The signals are transferred separately to the central
nervous system through different pathways and interact in
areas such as the orbitofrontal cortex and hypothalamus
in primates to produce reward signals that influence food
intake and that are reflected in the subjective pleasantness
of taste, flavour, and food. The rewarding effect of food
produced by food in the mouth is decreased by feeding to
satiety and can also be influenced by learning by signals in
the gut that lead to conditioned appetite and satiety for
the flavour of the food. The amygdala and orbitofrontal
cortex are involved in reward evaluations and conditioned
preference and aversion. The effects of cognition and at-
tention on taste and flavour are evident in the orbitofron-
tal cortex and anterior cingulate cortex.
The signals that originate in the mouth are a major

contributor to the reward value of food, which can lead
to a decision to eat that food. Signals that originate in
the gut are involved in the termination of a meal, that is,
in satiety. Gut signals which are transferred via neural
and humoral pathways can provide information about
the metabolic and nutritional content of the food that
can lead, over time, to learned appetite and satiety for
the flavour of a food and influence reward value of
foods. The extent to which these gut signals mediate
nutrient-specific effects on food intake is an important
subject for future research. In addition, one key area for
investigation is how the hunger and satiety signals repre-
sented in the hypothalamus modulate taste, olfactory,
and flavour signals to produce a food reward signal that
drives eating. Little is known for example about how
these hunger and satiety signals project to reward-
related areas such as the orbitofrontal cortex. Under-
standing further the dual sensing of food in the mouth
and gut, and cognitive signals, is important for a better
understanding of the control of food intake and poten-
tially of its disorders and metabolic disorders. Identifying
the neural processing of sensory signals produced by
chemical components of food may lead to promising
treatments for metabolic disorders, and understanding
top-down cognitive processes may contribute to improve
treatment for eating disorders.
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