The growing availability of network data in a wide variety of research disciplines has made complex network analysis a rapidly growing research area ever since two seminal publications in the late 1990s uncovered fundamental principles that underlie many real-world networks such as social networks, power grids, neural networks and genetic regulatory networks [2, 3]. In recent work [4] we construct a bipartite network of chemical flavour compounds and food ingredients in which a link signifies the natural occurrence of a compound in an ingredient. These data were derived from Fenaroli’s Handbook of Flavour Ingredients[5]. Using a one-mode projection the bipartite network is converted into a weighted network of ingredients only, in which the weight of a link between two ingredients is given by the number of flavour compounds they share. This weighted network shows a modular organization, with modules corresponding to food types such as fruits, vegetables and meats. While this might be expected, it is particularly interesting to see the location of these modules with respect to each other. Meats for instance lie between fruits and vegetables, and closer to spices and herbs than seafood does. The backbone of this network, extracted using the method described in [6], is shown in Figure 1.
The chef Heston Blumenthal, together with flavour scientists, has suggested that two foods that share chemical flavour compounds are more likely to taste good in combination [7]. By comparing the network of ingredients to a body of 56,498 online recipes, downloaded from epicurious.com, allrecipes.com, and menupan.com, we were able to show that this hypothesis is confirmed in most Western cuisines, but not in Eastern ones. This result indicates that shared compounds may offer one of several possible mechanisms that can make two ingredients compatible.
Our network of ingredients and flavour compounds is just a first step towards a true network of shared flavour compound perception, which would have to include compound concentrations [8] and detection thresholds [9] in order to further investigate the shared compound hypothesis. Its most important purpose is to open up a new way in which data analysis can aid sensory science and the study of culinary practice.
In a broader development the increasing availability of data on food usage, food chemistry and sensory biology is likely to result in the establishment of new research disciplines, such as ‘computational gastronomy’.