Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell. 2000;100(6):693–702.
Article
PubMed
CAS
Google Scholar
Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, et al. An amino-acid taste receptor. Nature. 2002;416(6877):199–202. doi:10.1038/nature726.
Article
PubMed
CAS
Google Scholar
Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet taste receptors. Cell. 2001;106(3):381–90.
Article
PubMed
CAS
Google Scholar
Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem. 2002;277(1):1–4. doi:10.1074/jbc.R100054200.
Article
PubMed
CAS
Google Scholar
Roper SD, Chaudhari N. Processing umami and other tastes in mammalian taste buds. Ann N Y Acad Sci. 2009;1170:60–5. doi:10.1111/j.1749-6632.2009.04107.x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yarmolinsky DA, Zuker CS, Ryba NJ. Common sense about taste: from mammals to insects. Cell. 2009;139(2):234–44. doi:10.1016/j.cell.2009.10.001.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mattes RD. Physiologic responses to sensory stimulation by food: nutritional implications. J Am Diet Assoc. 1997;97(4):406–13. doi:10.1016/S0002-8223(97)00101-6.
Article
PubMed
CAS
Google Scholar
Power ML, Schulkin J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite. 2008;50(2–3):194–206. doi:10.1016/j.appet.2007.10.006.
Article
PubMed
PubMed Central
Google Scholar
Smeets PA, Erkner A, de Graaf C. Cephalic phase responses and appetite. Nutr Rev. 2010;68(11):643–55. doi:10.1111/j.1753-4887.2010.00334.x.
Article
PubMed
Google Scholar
Teff K. Nutritional implications of the cephalic-phase reflexes: endocrine responses. Appetite. 2000;34(2):206–13. doi:10.1006/appe.1999.0282.
Article
PubMed
CAS
Google Scholar
Kokrashvili Z, Yee KK, Ilegems E, Iwatsuki K, Li Y, Mosinger B, et al. Endocrine taste cells. Br J Nutr. 2014;111 Suppl 1:S23–9. doi:10.1017/S0007114513002262.
Article
PubMed
PubMed Central
CAS
Google Scholar
Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Gut. 2014;63(1):179–90. doi:10.1136/gutjnl-2013-305112.
Article
PubMed
CAS
Google Scholar
Dotson CD, Geraedts MC, Munger SD. Peptide regulators of peripheral taste function. Semin Cell Dev Biol. 2013;24(3):232–9. doi:10.1016/j.semcdb.2013.01.004.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shin YK, Martin B, Golden E, Dotson CD, Maudsley S, Kim W, et al. Modulation of taste sensitivity by GLP-1 signaling. J Neurochem. 2008;106(1):455–63. doi:10.1111/j.1471-4159.2008.05397.x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shin YK, Martin B, Kim W, White CM, Ji S, Sun Y, et al. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants. PLoS One. 2010;5(9):e12729. doi:10.1371/journal.pone.0012729.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kadohisa M, Rolls ET, Verhagen JV. Orbitofrontal cortex: neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience. 2004;127(1):207–21. doi:10.1016/j.neuroscience.2004.04.037.
Article
PubMed
CAS
Google Scholar
Rolls ET, Verhagen JV, Kadohisa M. Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and capsaicin. J Neurophysiol. 2003;90(6):3711–24. doi:10.1152/jn.00515.2003.
Article
PubMed
Google Scholar
Verhagen JV, Kadohisa M, Rolls ET. Primate insular/opercular taste cortex: neuronal representations of the viscosity, fat texture, grittiness, temperature, and taste of foods. J Neurophysiol. 2004;92(3):1685–99. doi:10.1152/jn.00321.2004.
Article
PubMed
Google Scholar
Hao S, Sternini C, Raybould HE. Role of CCK1 and Y2 receptors in activation of hindbrain neurons induced by intragastric administration of bitter taste receptor ligands. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R33–8. doi:10.1152/ajpregu.00675.2007.
Article
PubMed
CAS
Google Scholar
Kokrashvili Z, Mosinger B, Margolskee RF. T1r3 and alpha-gustducin in gut regulate secretion of glucagon-like peptide-1. Ann N Y Acad Sci. 2009;1170:91–4. doi:10.1111/j.1749-6632.2009.04485.x.
Article
PubMed
CAS
Google Scholar
Kokrashvili Z, Mosinger B, Margolskee RF. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr. 2009;90(3):822S–5S. doi:10.3945/ajcn.2009.27462T.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen MC, Wu SV, Reeve Jr JR, Rozengurt E. Bitter stimuli induce Ca2+ signaling and CCK release in enteroendocrine STC-1 cells: role of L-type voltage-sensitive Ca2+ channels. Am J Physiol Cell Physiol. 2006;291(4):C726–39. doi:10.1152/ajpcell.00003.2006.
Article
PubMed
CAS
Google Scholar
Janssen S, Laermans J, Verhulst PJ, Thijs T, Tack J, Depoortere I. Bitter taste receptors and alpha-gustducin regulate the secretion of ghrelin with functional effects on food intake and gastric emptying. Proc Natl Acad Sci U S A. 2011;108(5):2094–9. doi:10.1073/pnas.1011508108.
Article
PubMed
PubMed Central
Google Scholar
Jang HJ, Kokrashvili Z, Theodorakis MJ, Carlson OD, Kim BJ, Zhou J, et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc Natl Acad Sci U S A. 2007;104(38):15069–74. doi:10.1073/pnas.0706890104.
Article
PubMed
PubMed Central
CAS
Google Scholar
Blackshaw LA, Grundy D. Effects of cholecystokinin (CCK-8) on two classes of gastroduodenal vagal afferent fibre. J Auton Nerv Syst. 1990;31(3):191–201.
Article
PubMed
CAS
Google Scholar
Hewson G, Leighton GE, Hill RG, Hughes J. The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of the action of endogenous cholecystokinin. Br J Pharmacol. 1988;93(1):79–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Raybould HE, Gayton RJ, Dockray GJ. CNS effects of circulating CCK8: involvement of brainstem neurones responding to gastric distension. Brain Res. 1985;342(1):187–90.
Article
PubMed
CAS
Google Scholar
Batterham RL, Bloom SR. The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci. 2003;994:162–8.
Article
PubMed
CAS
Google Scholar
McGowan BM, Bloom SR. Peptide YY and appetite control. Curr Opin Pharmacol. 2004;4(6):583–8. doi:10.1016/j.coph.2004.06.007.
Article
PubMed
CAS
Google Scholar
Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141(11):4325–8. doi:10.1210/endo.141.11.7873.
Article
PubMed
CAS
Google Scholar
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733–94. doi:10.1152/physrev.00055.2009.
Article
PubMed
CAS
Google Scholar
Raybould HE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 2010;153(1–2):41–6. doi:10.1016/j.autneu.2009.07.007.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kellett GL, Brot-Laroche E, Mace OJ, Leturque A. Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr. 2008;28:35–54. doi:10.1146/annurev.nutr.28.061807.155518.
Article
PubMed
CAS
Google Scholar
Roder PV, Geillinger KE, Zietek TS, Thorens B, Koepsell H, Daniel H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014;9(2):e89977. doi:10.1371/journal.pone.0089977.
Article
PubMed
PubMed Central
CAS
Google Scholar
Behrens M, Meyerhof W. Gustatory and extragustatory functions of mammalian taste receptors. Physiol Behav. 2011;105(1):4–13. doi:10.1016/j.physbeh.2011.02.010.
Article
PubMed
CAS
Google Scholar
Green BG. Chemesthesis and the chemical senses as components of a "chemofensor complex". Chem Senses. 2012;37(3):201–6. doi:10.1093/chemse/bjr119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fujita Y, Wideman RD, Speck M, Asadi A, King DS, Webber TD, et al. Incretin release from gut is acutely enhanced by sugar but not by sweeteners in vivo. Am J Physiol Endocrinol Metab. 2009;296(3):E473–9. doi:10.1152/ajpendo.90636.2008.
Article
PubMed
CAS
Google Scholar
Ma J, Bellon M, Wishart JM, Young R, Blackshaw LA, Jones KL, et al. Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. Am J Physiol Gastrointest Liver Physiol. 2009;296(4):G735–9. doi:10.1152/ajpgi.90708.2008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ford HE, Peters V, Martin NM, Sleeth ML, Ghatei MA, Frost GS, et al. Effects of oral ingestion of sucralose on gut hormone response and appetite in healthy normal-weight subjects. Eur J Clin Nutr. 2011;65(4):508–13. doi:10.1038/ejcn.2010.291.
Article
PubMed
CAS
Google Scholar
Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci U S A. 2007;104(38):15075–80. doi:10.1073/pnas.0706678104.
Article
PubMed
PubMed Central
CAS
Google Scholar
Berthoud HR. Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol Motil. 2008;20 Suppl 1:64–72. doi:10.1111/j.1365-2982.2008.01104.x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rasoamanana R, Darcel N, Fromentin G, Tome D. Nutrient sensing and signalling by the gut. Proc Nutr Soc. 2012;71(4):446–55. doi:10.1017/S0029665112000110.
Article
PubMed
CAS
Google Scholar
Hara T, Kashihara D, Ichimura A, Kimura I, Tsujimoto G, Hirasawa A. Role of free fatty acid receptors in the regulation of energy metabolism. Biochim Biophys Acta. 2014;1841(9):1292–300. doi:10.1016/j.bbalip.2014.06.002.
Article
PubMed
CAS
Google Scholar
Niijima A. Nervous regulation of metabolism. Prog Neurobiol. 1989;33(2):135–47.
Article
PubMed
CAS
Google Scholar
Tsurugizawa T, Uematsu A, Uneyama H, Torii K. Different BOLD responses to intragastric load of L-glutamate and inosine monophosphate in conscious rats. Chem Senses. 2011;36(2):169–76. doi:10.1093/chemse/bjq107.
Article
PubMed
CAS
Google Scholar
Tsurugizawa T, Kondoh T, Torii K. Forebrain activation induced by postoral nutritive substances in rats. Neuroreport. 2008;19(11):1111–5. doi:10.1097/WNR.0b013e328307c414.
Article
PubMed
CAS
Google Scholar
Tsurugizawa T, Uneyama H. Differences in BOLD responses to intragastrically infused glucose and saccharin in rats. Chem Senses. 2014;39(8):683–91. doi:10.1093/chemse/bju040.
Article
PubMed
Google Scholar
Tomita S, Terao Y, Hatano T, Nishimura R. Subtotal glossectomy preserving half the tongue base prevents taste disorder in patients with tongue cancer. International journal of oral and maxillofacial surgery. 2014. doi:10.1016/j.ijom.2014.02.006
Sclafani A, Marambaud P, Ackroff K. Sucrose-conditioned flavor preferences in sweet ageusic T1r3 and Calhm1 knockout mice. Physiol Behav. 2014;126:25–9. doi:10.1016/j.physbeh.2013.12.003.
Article
PubMed
PubMed Central
CAS
Google Scholar
Beckstead RM, Norgren R. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J Comp Neurol. 1979;184(3):455–72. doi:10.1002/cne.901840303.
Article
PubMed
CAS
Google Scholar
Pritchard TC, Hamilton RB, Morse JR, Norgren R. Projections of thalamic gustatory and lingual areas in the monkey, Macaca fascicularis. J Comp Neurol. 1986;244(2):213–28. doi:10.1002/cne.902440208.
Article
PubMed
CAS
Google Scholar
Pritchard TC. Gustatory system. In: Mai JK, Paxinos G, editors. The Human Nervous System. Thirdth ed. MA: Elservier; 2011. p. 1187–218.
Google Scholar
Turner BH, Mishkin M, Knapp M. Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol. 1980;191(4):515–43. doi:10.1002/cne.901910402.
Article
PubMed
CAS
Google Scholar
Mufson EJ, Mesulam MM. Insula of the old world monkey. II: afferent cortical input and comments on the claustrum. J Comp Neurol. 1982;212(1):23–37. doi:10.1002/cne.902120103.
Article
PubMed
CAS
Google Scholar
Rolls ET, Baylis LL. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J Neurosci. 1994;14(9):5437–52.
PubMed
CAS
Google Scholar
Carmichael ST, Price JL. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol. 1995;363(4):615–41. doi:10.1002/cne.903630408.
Article
PubMed
CAS
Google Scholar
Beckstead RM, Morse JR, Norgren R. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol. 1980;190(2):259–82. doi:10.1002/cne.901900205.
Article
PubMed
CAS
Google Scholar
Norgren R. Taste pathways to hypothalamus and amygdala. J Comp Neurol. 1976;166(1):17–30. doi:10.1002/cne.901660103.
Article
PubMed
CAS
Google Scholar
Lundy Jr RF, Norgren R. Pontine gustatory activity is altered by electrical stimulation in the central nucleus of the amygdala. J Neurophysiol. 2001;85(2):770–83.
PubMed
Google Scholar
Li CS, Cho YK, Smith DV. Modulation of parabrachial taste neurons by electrical and chemical stimulation of the lateral hypothalamus and amygdala. J Neurophysiol. 2005;93(3):1183–96. doi:10.1152/jn.00828.2004.
Article
PubMed
Google Scholar
Lundy Jr RF, Norgren R. Activity in the hypothalamus, amygdala, and cortex generates bilateral and convergent modulation of pontine gustatory neurons. J Neurophysiol. 2004;91(3):1143–57. doi:10.1152/jn.00840.2003.
Article
PubMed
Google Scholar
Norita M, Kawamura K. Subcortical afferents to the monkey amygdala: an HRP study. Brain Res. 1980;190(1):225–30.
Article
PubMed
CAS
Google Scholar
Pritchard TC, Hamilton RB, Norgren R. Projections of the parabrachial nucleus in the old world monkey. Exp Neurol. 2000;165(1):101–17. doi:10.1006/exnr.2000.7450.
Article
PubMed
CAS
Google Scholar
Carmichael ST, Price JL. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1996;371(2):179–207. doi:10.1002/(SICI)1096-9861(19960722)371:2<179::AID-CNE1>3.0.CO;2-#.
Article
PubMed
CAS
Google Scholar
Carmichael ST, Price JL. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1995;363(4):642–64. doi:10.1002/cne.903630409.
Article
PubMed
CAS
Google Scholar
Chikama M, McFarland NR, Amaral DG, Haber SN. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci. 1997;17(24):9686–705.
PubMed
CAS
Google Scholar
Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E. The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci. 1995;15(7 Pt 1):4851–67.
PubMed
CAS
Google Scholar
Selemon LD, Goldman-Rakic PS. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci. 1985;5(3):776–94.
PubMed
CAS
Google Scholar
Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 2010;35(1):4–26. doi:10.1038/npp.2009.129.
Article
PubMed
PubMed Central
Google Scholar
Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006;26(32):8368–76. doi:10.1523/JNEUROSCI.0271-06.2006.
Article
PubMed
CAS
Google Scholar
Huda MS, Wilding JP, Pinkney JH. Gut peptides and the regulation of appetite. Obes Rev. 2006;7(2):163–82. doi:10.1111/j.1467-789X.2006.00245.x.
Article
PubMed
CAS
Google Scholar
Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999;20(1):68–100. doi:10.1210/edrv.20.1.0357.
PubMed
CAS
Google Scholar
Banks WA. The blood-brain barrier as a regulatory interface in the gut-brain axes. Physiol Behav. 2006;89(4):472–6. doi:10.1016/j.physbeh.2006.07.004.
Article
PubMed
CAS
Google Scholar
Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the hypothalamus in appetite regulation. Endocr J. 2010;57(5):359–72.
Article
PubMed
CAS
Google Scholar
Begg DP, Woods SC. The endocrinology of food intake. Nat Rev Endocrinol. 2013;9(10):584–97. doi:10.1038/nrendo.2013.136.
Article
PubMed
CAS
Google Scholar
Simpson K, Parker J, Plumer J, Bloom S. CCK, PYY and PP: the control of energy balance. Handb Exp Pharmacol. 2012;209:209–30. doi:10.1007/978-3-642-24716-3_9.
Article
PubMed
CAS
Google Scholar
Druce MR, Small CJ, Bloom SR. Minireview: gut peptides regulating satiety. Endocrinology. 2004;145(6):2660–5. doi:10.1210/en.2004-0089.
Article
PubMed
CAS
Google Scholar
Konturek PC, Konturek JW, Czesnikiewicz-Guzik M, Brzozowski T, Sito E, Konturek SJ. Neuro-hormonal control of food intake: basic mechanisms and clinical implications. J Physiol Pharmacol. 2005;56 Suppl 6:5–25.
Google Scholar
Scott TR, Yaxley S, Sienkiewicz ZJ, Rolls ET. Gustatory responses in the frontal opercular cortex of the alert cynomolgus monkey. J Neurophysiol. 1986;56(3):876–90.
PubMed
CAS
Google Scholar
Yaxley S, Rolls ET, Sienkiewicz ZJ. The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. Physiol Behav. 1988;42(3):223–9.
Article
PubMed
CAS
Google Scholar
Scott TR, Plata-Salaman CR, Smith VL, Giza BK. Gustatory neural coding in the monkey cortex: stimulus intensity. J Neurophysiol. 1991;65(1):76–86.
PubMed
CAS
Google Scholar
Ito S, Ogawa H. Neural activities in the fronto-opercular cortex of macaque monkeys during tasting and mastication. Jpn J Physiol. 1994;44(2):141–56.
Article
PubMed
CAS
Google Scholar
Rolls ET, Scott TR, Sienkiewicz ZJ, Yaxley S. The responsiveness of neurones in the frontal opercular gustatory cortex of the macaque monkey is independent of hunger. J Physiol. 1988;397:1–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yaxley S, Rolls ET, Sienkiewicz ZJ, Scott TR. Satiety does not affect gustatory activity in the nucleus of the solitary tract of the alert monkey. Brain Res. 1985;347(1):85–93.
Article
PubMed
CAS
Google Scholar
Giza BK, Scott TR, Vanderweele DA. Administration of satiety factors and gustatory responsiveness in the nucleus tractus solitarius of the rat. Brain Res Bull. 1992;28(4):637–9.
Article
PubMed
CAS
Google Scholar
Scott TR, Small DM. The role of the parabrachial nucleus in taste processing and feeding. Ann N Y Acad Sci. 2009;1170:372–7. doi:10.1111/j.1749-6632.2009.03906.x.
Article
PubMed
Google Scholar
Rolls ET. Emotion and decision-making explained. Oxford, UK: Oxford University Press; 2014.
Google Scholar
Rolls ET. Taste, olfactory, and food reward value processing in the brain. Progress in neurobiology. 2015;127-128C:64–90. doi:10.1016/j.pneurobio.2015.03.002.
Rolls ET. Functions of the anterior insula in taste, autonomic, and related functions. Brain and cognition. 2015. doi:10.1016/j.bandc.2015.07.002.
Yasoshima Y, Yamamoto T. Short-term and long-term excitability changes of the insular cortical neurons after the acquisition of taste aversion learning in behaving rats. Neuroscience. 1998;84(1):1–5.
Article
PubMed
CAS
Google Scholar
Bermudez-Rattoni F. The forgotten insular cortex: its role on recognition memory formation. Neurobiol Learn Mem. 2014;109:207–16. doi:10.1016/j.nlm.2014.01.001.
Article
PubMed
Google Scholar
Miranda MI, Ferreira G, Ramirez-Lugo L, Bermudez-Rattoni F. Role of cholinergic system on the construction of memories: taste memory encoding. Neurobiol Learn Mem. 2003;80(3):211–22.
Article
PubMed
CAS
Google Scholar
Scott TR. Learning through the taste system. Front Syst Neurosci. 2011;5:87. doi:10.3389/fnsys.2011.00087.
Article
PubMed
PubMed Central
Google Scholar
Bermudez-Rattoni F, McGaugh JL. Insular cortex and amygdala lesions differentially affect acquisition on inhibitory avoidance and conditioned taste aversion. Brain Res. 1991;549(1):165–70.
Article
PubMed
CAS
Google Scholar
Kaada BR, Pribram KH, Epstein JA. Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus; a preliminary report. J Neurophysiol. 1949;12(5):347–56.
PubMed
CAS
Google Scholar
Thorpe SJ, Rolls ET, Maddison S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res. 1983;49(1):93–115.
Article
PubMed
CAS
Google Scholar
Takagi SF. The olfactory nervous system of the old world monkey. Jpn J Physiol. 1984;34(4):561–73.
Article
PubMed
CAS
Google Scholar
Neafsey EJ. Prefrontal cortical control of the autonomic nervous system: anatomical and physiological observations. Prog Brain Res. 1990;85:147–65. discussion 65–6.
Article
PubMed
CAS
Google Scholar
Rolls ET, Yaxley S, Sienkiewicz ZJ. Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J Neurophysiol. 1990;64(4):1055–66.
PubMed
CAS
Google Scholar
Rolls ET, Critchley HD, Mason R, Wakeman EA. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J Neurophysiol. 1996;75(5):1970–81.
PubMed
CAS
Google Scholar
Verhagen JV, Rolls ET, Kadohisa M. Neurons in the primate orbitofrontal cortex respond to fat texture independently of viscosity. J Neurophysiol. 2003;90(3):1514–25. doi:10.1152/jn.00320.2003.
Article
PubMed
Google Scholar
Carmichael ST, Price JL. Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol. 1994;346(3):366–402. doi:10.1002/cne.903460305.
Article
PubMed
CAS
Google Scholar
Ongur D, An X, Price JL. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol. 1998;401(4):480–505.
Article
PubMed
CAS
Google Scholar
Kadohisa M, Rolls ET, Verhagen JV. Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex and amygdala. Chem Senses. 2005;30(5):401–19. doi:10.1093/chemse/bji036.
Article
PubMed
Google Scholar
Padoa-Schioppa C, Assad JA. Neurons in the orbitofrontal cortex encode economic value. Nature. 2006;441(7090):223–6. doi:10.1038/nature04676.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tremblay L, Schultz W. Relative reward preference in primate orbitofrontal cortex. Nature. 1999;398(6729):704–8. doi:10.1038/19525.
Article
PubMed
CAS
Google Scholar
Morrison SE, Salzman CD. The convergence of information about rewarding and aversive stimuli in single neurons. J Neurosci. 2009;29(37):11471–83. doi:10.1523/JNEUROSCI.1815-09.2009.
Article
PubMed
PubMed Central
CAS
Google Scholar
Critchley HD, Rolls ET. Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task. J Neurophysiol. 1996;75(4):1659–72.
PubMed
CAS
Google Scholar
Critchley HD, Rolls ET. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J Neurophysiol. 1996;75(4):1673–86.
PubMed
CAS
Google Scholar
Rolls ET, Sienkiewicz ZJ, Yaxley S. Hunger modulates the responses to gustatory stimuli of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. Eur J Neurosci. 1989;1(1):53–60.
Article
PubMed
Google Scholar
Morrison SE, Saez A, Lau B, Salzman CD. Different time courses for learning-related changes in amygdala and orbitofrontal cortex. Neuron. 2011;71(6):1127–40. doi:10.1016/j.neuron.2011.07.016.
Article
PubMed
PubMed Central
CAS
Google Scholar
Delgado JM, Livingston RB. Some respiratory, vascular and thermal responses to stimulation of orbital surface of frontal lobe. J Neurophysiol. 1948;11(1):39–55.
PubMed
CAS
Google Scholar
Bailey P, Sweet WH. Effects on respiration, blood pressure and gastric motility of stimulation of orbital surface of frontal lobe. Neurophysiology. 1940;3:276–81.
Google Scholar
Gabbott PL, Warner TA, Jays PR, Bacon SJ. Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res. 2003;993(1–2):59–71.
Article
PubMed
CAS
Google Scholar
Price JL, Amaral DG. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci. 1981;1(11):1242–59.
PubMed
CAS
Google Scholar
Barbas H, Saha S, Rempel-Clower N, Ghashghaei T. Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci. 2003;4:25. doi:10.1186/1471-2202-4-25.
Article
PubMed
PubMed Central
Google Scholar
Rolls ET. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008;95(2):131–64. doi:10.1556/APhysiol.95.2008.2.1.
Article
PubMed
CAS
Google Scholar
Jezzini A, Mazzucato L, La Camera G, Fontanini A. Processing of hedonic and chemosensory features of taste in medial prefrontal and insular networks. J Neurosci. 2013;33(48):18966–78. doi:10.1523/JNEUROSCI.2974-13.2013.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bouret S, Richmond BJ. Ventromedial and orbital prefrontal neurons differentially encode internally and externally driven motivational values in monkeys. J Neurosci. 2010;30(25):8591–601. doi:10.1523/JNEUROSCI.0049-10.2010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Niki H, Watanabe M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 1979;171(2):213–24.
Article
PubMed
CAS
Google Scholar
Matsumoto M, Matsumoto K, Abe H, Tanaka K. Medial prefrontal cell activity signaling prediction errors of action values. Nat Neurosci. 2007;10(5):647–56. doi:10.1038/nn1890.
Article
PubMed
CAS
Google Scholar
Smith WK. The functional significance of the rostral cingular cortex as revealed by its responses to electrical excitation. Neurophysiology. 1945;8:241–55.
Google Scholar
Ward Jr AA. The cingular gyrus, area 24. J Neurophysiol. 1948;11(1):13–23.
PubMed
Google Scholar
Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. Optimal decision making and the anterior cingulate cortex. Nat Neurosci. 2006;9(7):940–7. doi:10.1038/nn1724.
Article
PubMed
CAS
Google Scholar
Bernard JF, Alden M, Besson JM. The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol. 1993;329(2):201–29. doi:10.1002/cne.903290205.
Article
PubMed
CAS
Google Scholar
Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci. 2002;25:433–69. doi:10.1146/annurev.neuro.25.032502.111311.
Article
PubMed
CAS
Google Scholar
Aggleton JP, Burton MJ, Passingham RE. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res. 1980;190(2):347–68.
Article
PubMed
CAS
Google Scholar
Mufson EJ, Mesulam MM, Pandya DN. Insular interconnections with the amygdala in the rhesus monkey. Neuroscience. 1981;6(7):1231–48.
Article
PubMed
CAS
Google Scholar
Amaral DG, Price JL. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol. 1984;230(4):465–96. doi:10.1002/cne.902300402.
Article
PubMed
CAS
Google Scholar
Pitkanen A, Amaral DG. Organization of the intrinsic connections of the monkey amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol. 1998;398(3):431–58.
Article
PubMed
CAS
Google Scholar
Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience. 2002;110(2):257–75.
Article
PubMed
CAS
Google Scholar
Scott TR, Karadi Z, Oomura Y, Nishino H, Plata-Salaman CR, Lenard L, et al. Gustatory neural coding in the amygdala of the alert macaque monkey. J Neurophysiol. 1993;69(6):1810–20.
PubMed
CAS
Google Scholar
Kadohisa M, Verhagen JV, Rolls ET. The primate amygdala: neuronal representations of the viscosity, fat texture, temperature, grittiness and taste of foods. Neuroscience. 2005;132(1):33–48. doi:10.1016/j.neuroscience.2004.12.005.
Article
PubMed
CAS
Google Scholar
Balleine BW, Killcross S. Parallel incentive processing: an integrated view of amygdala function. Trends Neurosci. 2006;29(5):272–9. doi:10.1016/j.tins.2006.03.002.
Article
PubMed
CAS
Google Scholar
Corbit LH, Balleine BW. Double dissociation of basolateral and central amygdala lesions on the general and outcome-specific forms of pavlovian-instrumental transfer. J Neurosci. 2005;25(4):962–70. doi:10.1523/JNEUROSCI.4507-04.2005.
Article
PubMed
CAS
Google Scholar
Yasoshima Y, Shimura T, Yamamoto T. Single unit responses of the amygdala after conditioned taste aversion in conscious rats. Neuroreport. 1995;6(17):2424–8.
Article
PubMed
CAS
Google Scholar
Nishijo H, Ono T, Nishino H. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J Neurosci. 1988;8(10):3570–83.
PubMed
CAS
Google Scholar
Paton JJ, Belova MA, Morrison SE, Salzman CD. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature. 2006;439(7078):865–70. doi:10.1038/nature04490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanghera MK, Rolls ET, Roper-Hall A. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp Neurol. 1979;63(3):610–26.
Article
PubMed
CAS
Google Scholar
Wellman LL, Gale K, Malkova L. GABAA-mediated inhibition of basolateral amygdala blocks reward devaluation in macaques. J Neurosci. 2005;25(18):4577–86. doi:10.1523/JNEUROSCI.2257-04.2005.
Article
PubMed
Google Scholar
Yan J, Scott TR. The effect of satiety on responses of gustatory neurons in the amygdala of alert cynomolgus macaques. Brain Res. 1996;740(1–2):193–200.
Article
PubMed
CAS
Google Scholar
Rempel-Clower NL, Barbas H. Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol. 1998;398(3):393–419.
Article
PubMed
CAS
Google Scholar
Morecraft RJ, Geula C, Mesulam MM. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol. 1992;323(3):341–58. doi:10.1002/cne.903230304.
Article
PubMed
CAS
Google Scholar
Tanabe T, Yarita H, Iino M, Ooshima Y, Takagi SF. An olfactory projection area in orbitofrontal cortex of the monkey. J Neurophysiol. 1975;38(5):1269–83.
PubMed
CAS
Google Scholar
Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci. 2011;14(3):351–5. doi:10.1038/nn.2739.
Article
PubMed
PubMed Central
CAS
Google Scholar
Atasoy D, Betley JN, Su HH, Sternson SM. Deconstruction of a neural circuit for hunger. Nature. 2012;488(7410):172–7. doi:10.1038/nature11270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, et al. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature. 2014;507(7491):238–42. doi:10.1038/nature12956.
Article
PubMed
PubMed Central
CAS
Google Scholar
O'Malley D, Reimann F, Simpson AK, Gribble FM. Sodium-coupled glucose cotransporters contribute to hypothalamic glucose sensing. Diabetes. 2006;55(12):3381–6. doi:10.2337/db06-0531.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burton MJ, Rolls ET, Mora F. Effects of hunger on the responses of neurons in the lateral hypothalamus to the sight and taste of food. Exp Neurol. 1976;51(3):668–77.
Article
PubMed
CAS
Google Scholar
Rolls ET, Murzi E, Yaxley S, Thorpe SJ, Simpson SJ. Sensory-specific satiety: food-specific reduction in responsiveness of ventral forebrain neurons after feeding in the monkey. Brain Res. 1986;368(1):79–86.
Article
PubMed
CAS
Google Scholar
Baxter MG, Parker A, Lindner CC, Izquierdo AD, Murray EA. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci. 2000;20(11):4311–9.
PubMed
CAS
Google Scholar
Pears A, Parkinson JA, Hopewell L, Everitt BJ, Roberts AC. Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates. J Neurosci. 2003;23(35):11189–201.
PubMed
CAS
Google Scholar
Faurion A, Cerf B, Le Bihan D, Pillias AM. fMRI study of taste cortical areas in humans. Ann N Y Acad Sci. 1998;855:535–45.
Article
PubMed
CAS
Google Scholar
de Araujo IE, Kringelbach ML, Rolls ET, Hobden P. Representation of umami taste in the human brain. J Neurophysiol. 2003;90(1):313–9. doi:10.1152/jn.00669.2002.
Article
PubMed
Google Scholar
Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493(1):154–66. doi:10.1002/cne.20749.
Article
PubMed
Google Scholar
O'Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F. Representation of pleasant and aversive taste in the human brain. J Neurophysiol. 2001;85(3):1315–21.
PubMed
Google Scholar
Small DM, Gregory MD, Mak YE, Gitelman D, Mesulam MM, Parrish T. Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron. 2003;39(4):701–11.
Article
PubMed
CAS
Google Scholar
Small DM, Bender G, Veldhuizen MG, Rudenga K, Nachtigal D, Felsted J. The role of the human orbitofrontal cortex in taste and flavor processing. Ann N Y Acad Sci. 2007;1121:136–51. doi:10.1196/annals.1401.002.
Article
PubMed
Google Scholar
Kringelbach ML, O'Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex. 2003;13(10):1064–71.
Article
PubMed
CAS
Google Scholar
Batterham RL, Ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007;450(7166):106–9. doi:10.1038/nature06212.
Article
PubMed
CAS
Google Scholar
Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 2008;7(5):400–9. doi:10.1016/j.cmet.2008.03.007.
Article
PubMed
CAS
Google Scholar
Grabenhorst F, Rolls ET, Bilderbeck A. How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex. 2008;18(7):1549–59. doi:10.1093/cercor/bhm185.
Article
PubMed
Google Scholar
Grabenhorst F, Rolls ET. Selective attention to affective value alters how the brain processes taste stimuli. Eur J Neurosci. 2008;27(3):723–9. doi:10.1111/j.1460-9568.2008.06033.x.
Article
PubMed
Google Scholar
Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P. The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci. 2001;935:107–17.
Article
PubMed
CAS
Google Scholar
Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011;15(2):56–67. doi:10.1016/j.tics.2010.12.004.
Article
PubMed
Google Scholar
Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012;488(7410):218–21. doi:10.1038/nature11239.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walton ME, Devlin JT, Rushworth MF. Interactions between decision making and performance monitoring within prefrontal cortex. Nat Neurosci. 2004;7(11):1259–65. doi:10.1038/nn1339.
Article
PubMed
CAS
Google Scholar
Cassady BA, Considine RV, Mattes RD. Beverage consumption, appetite, and energy intake: what did you expect? Am J Clin Nutr. 2012;95(3):587–93. doi:10.3945/ajcn.111.025437.
Article
PubMed
PubMed Central
CAS
Google Scholar
Provencher V, Polivy J, Herman CP. Perceived healthiness of food. If it’s healthy, you can eat more! Appetite. 2009;52(2):340–4. doi:10.1016/j.appet.2008.11.005.
Article
PubMed
Google Scholar
Schioth HB, Ferriday D, Davies SR, Benedict C, Elmstahl H, Brunstrom JM, et al. Are you sure? Confidence about the satiating capacity of a food affects subsequent food intake. Nutrients. 2015;7(7):5088–97. doi:10.3390/nu7075088.
Article
PubMed
PubMed Central
Google Scholar
Nicolaidis S, Rowland N. Intravenous self-feeding: long-term regulation of energy balance in rats. Science. 1977;195(4278):589–91.
Article
PubMed
CAS
Google Scholar
Sclafani A. Oral and postoral determinants of food reward. Physiol Behav. 2004;81(5):773–9. doi:10.1016/j.physbeh.2004.04.031.
Article
PubMed
CAS
Google Scholar
Booth DA. Food-conditioned eating preferences and aversions with interoceptive elements: conditioned appetites and satieties. Ann N Y Acad Sci. 1985;443:22–41.
Article
PubMed
CAS
Google Scholar
Sclafani A. Gut-brain nutrient signaling. Appetition vs satiation Appetite. 2013;71:454–8. doi:10.1016/j.appet.2012.05.024.
Article
PubMed
CAS
Google Scholar
Gibbs J, Falasco JD. Sham feeding in the rhesus monkey. Physiol Behav. 1978;20(3):245–9.
Article
PubMed
CAS
Google Scholar
Gibbs J, Maddison SP, Rolls ET. Satiety role of the small intestine examined in sham-feeding rhesus monkeys. J Comp Physiol Psychol. 1981;95(6):1003–15.
Article
PubMed
CAS
Google Scholar
Rolls ET. Central nervous mechanisms related to feeding and appetite. Br Med Bull. 1981;37(2):131–4.
PubMed
CAS
Google Scholar
Raynor HA, Epstein LH. Dietary variety, energy regulation, and obesity. Psychol Bull. 2001;127(3):325–41.
Article
PubMed
CAS
Google Scholar
Yamamoto T. Taste responses of cortical neurons. Prog Neurobiol. 1984;23(4):273–315.
Article
PubMed
CAS
Google Scholar
Davis CM, Riley AL. Conditioned taste aversion learning: implications for animal models of drug abuse. Ann N Y Acad Sci. 2010;1187:247–75. doi:10.1111/j.1749-6632.2009.05147.x.
Article
PubMed
Google Scholar
Guzman-Ramos K, Bermudez-Rattoni F. Post-learning molecular reactivation underlies taste memory consolidation. Front Syst Neurosci. 2011;5:79. doi:10.3389/fnsys.2011.00079.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin JY, Arthurs J, Reilly S. Conditioned taste aversion, drugs of abuse and palatability. Neurosci Biobehav Rev. 2014;45C:28–45. doi:10.1016/j.neubiorev.2014.05.001.
Article
Google Scholar
Logue AW, Ophir I, Strauss KE. The acquisition of taste aversions in humans. Behav Res Ther. 1981;19(4):319–33.
Article
PubMed
CAS
Google Scholar
Ackroff K, Sclafani A. Energy density and macronutrient composition determine flavor preference conditioned by intragastric infusions of mixed diets. Physiol Behav. 2006;89(2):250–60. doi:10.1016/j.physbeh.2006.06.003.
Article
PubMed
CAS
Google Scholar
Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and flavor conditioning in rats by glucose but not a non-metabolizable glucose analog. Physiol Behav. 2014;133:92–8. doi:10.1016/j.physbeh.2014.04.042.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Araujo IE, Ferreira JG, Tellez LA, Ren X, Yeckel CW. The gut-brain dopamine axis: a regulatory system for caloric intake. Physiol Behav. 2012;106(3):394–9. doi:10.1016/j.physbeh.2012.02.026.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zukerman S, Ackroff K, Sclafani A. Rapid post-oral stimulation of intake and flavor conditioning by glucose and fat in the mouse. Am J Physiol Regul Integr Comp Physiol. 2011;301(6):R1635–47. doi:10.1152/ajpregu.00425.2011.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sclafani A, Glass DS, Margolskee RF, Glendinning JI. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1643–50. doi:10.1152/ajpregu.00495.2010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sclafani A, Ackroff K, Schwartz GJ. Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients. Physiol Behav. 2003;78(2):285–94.
Article
PubMed
CAS
Google Scholar
Zukerman S, Ackroff K, Sclafani A. Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am J Physiol Regul Integr Comp Physiol. 2013;305(7):R840–53. doi:10.1152/ajpregu.00297.2013.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sclafani A, Fanizza LJ, Azzara AV. Conditioned flavor avoidance, preference, and indifference produced by intragastric infusions of galactose, glucose, and fructose in rats. Physiol Behav. 1999;67(2):227–34.
Article
PubMed
CAS
Google Scholar
Ackroff K, Touzani K, Peets TK, Sclafani A. Flavor preferences conditioned by intragastric fructose and glucose: differences in reinforcement potency. Physiol Behav. 2001;72(5):691–703.
Article
PubMed
CAS
Google Scholar
Sclafani A, Ackroff K. Flavor preferences conditioned by intragastric glucose but not fructose or galactose in C57BL/6 J mice. Physiol Behav. 2012;106(4):457–61. doi:10.1016/j.physbeh.2012.03.008.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yiin YM, Ackroff K, Sclafani A. Flavor preferences conditioned by intragastric nutrient infusions in food restricted and free-feeding rats. Physiol Behav. 2005;84(2):217–31. doi:10.1016/j.physbeh.2004.11.008.
Article
PubMed
CAS
Google Scholar
Rolls BJ, Hetherington M, Laster LJ. Comparison of the effects of aspartame and sucrose on appetite and food intake. Appetite. 1988;11 Suppl 1:62–7.
Article
PubMed
CAS
Google Scholar
O'Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F, Kobal G, et al. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport. 2000;11(4):893–7.
Article
PubMed
Google Scholar
Gottfried JA, O'Doherty J, Dolan RJ. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science. 2003;301(5636):1104–7. doi:10.1126/science.1087919.
Article
PubMed
CAS
Google Scholar
Midkiff EE, Bernstein IL. Targets of learned food aversions in humans. Physiol Behav. 1985;34(5):839–41.
Article
PubMed
CAS
Google Scholar
Arwas S, Rolnick A, Lubow RE. Conditioned taste aversion in humans using motion-induced sickness as the US. Behav Res Ther. 1989;27(3):295–301.
Article
PubMed
CAS
Google Scholar
Okifuji A, Friedman AG. Experimentally induced taste aversions in humans: effects of overshadowing on acquisition. Behav Res Ther. 1992;30(1):23–32.
Article
PubMed
CAS
Google Scholar
Gibson EL, Wainwright CJ, Booth DA. Disguised protein in lunch after low-protein breakfast conditions food-flavor preferences dependent on recent lack of protein intake. Physiol Behav. 1995;58(2):363–71.
Article
PubMed
CAS
Google Scholar
Drewnowski A, Massien C, Louis-Sylvestre J, Fricker J, Chapelot D, Apfelbaum M. Comparing the effects of aspartame and sucrose on motivational ratings, taste preferences, and energy intakes in humans. Am J Clin Nutr. 1994;59(2):338–45.
PubMed
CAS
Google Scholar
Birch LL, McPhee L, Steinberg L, Sullivan S. Conditioned flavor preferences in young children. Physiol Behav. 1990;47(3):501–5.
Article
PubMed
CAS
Google Scholar
Kern DL, McPhee L, Fisher J, Johnson S, Birch LL. The postingestive consequences of fat condition preferences for flavors associated with high dietary fat. Physiol Behav. 1993;54(1):71–6.
Article
PubMed
CAS
Google Scholar
Masic U, Yeomans MR. Umami flavor enhances appetite but also increases satiety. Am J Clin Nutr. 2014;100(2):532–8. doi:10.3945/ajcn.113.080929.
Article
PubMed
CAS
Google Scholar
van Avesaat M, Troost FJ, Ripken D, Peters J, Hendriks HF, Masclee AA. Intraduodenal infusion of a combination of tastants decreases food intake in humans. Am J Clin Nutr. 2015;102(4):729–35. doi:10.3945/ajcn.115.113266.
Article
PubMed
Google Scholar
Yeomans MR, Gould NJ, Mobini S, Prescott J. Acquired flavor acceptance and intake facilitated by monosodium glutamate in humans. Physiol Behav. 2008;93(4–5):958–66. doi:10.1016/j.physbeh.2007.12.009.
Article
PubMed
CAS
Google Scholar
Brooks SJ, O'Daly O, Uher R, Friederich HC, Giampietro V, Brammer M, et al. Thinking about eating food activates visual cortex with reduced bilateral cerebellar activation in females with anorexia nervosa: an fMRI study. PLoS One. 2012;7(3):e34000. doi:10.1371/journal.pone.0034000.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaye WH, Wierenga CE, Bailer UF, Simmons AN, Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 2013;36(2):110–20. doi:10.1016/j.tins.2013.01.003.
Article
PubMed
CAS
Google Scholar
Small DM, Scott TR. Symposium overview: what happens to the pontine processing? Repercussions of interspecies differences in pontine taste representation for tasting and feeding. Ann N Y Acad Sci. 2009;1170:343–6. doi:10.1111/j.1749-6632.2009.03918.x.
Article
PubMed
PubMed Central
Google Scholar
Passingham RE, Wise SP. The neurobiology of prefrontal cortex. Anatomy, evolution, and the origin of insight. Oxford: Oxford University Press; 2012.
Book
Google Scholar